Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.878
1.
Rev Assoc Med Bras (1992) ; 70(4): e20230990, 2024.
Article En | MEDLINE | ID: mdl-38716935

OBJECTIVE: We aimed to investigate the effect of coenzyme q10 on cyclophosphamide-induced kidney damage in rats. METHODS: A total of 30 female Wistar-Albino rats were utilized to form three groups. In group 1 (control group) (n=10), no drugs were given. In group 2 (cyclophosphamide group) (n=10), 30 mg/kg intraperitoneal cyclophosphamide was administered for 7 days. In group 3 (cyclophosphamide+coenzyme q10 group) (n=10), 30 mg/kg cyclophosphamide and 10 mg/kg coenzyme q10 were given for 7 days via intraperitoneal route. Right kidneys were removed in all groups. Blood malondialdehyde levels and activities of catalase and superoxide dismutase were measured. Histopathological damage was evaluated by examining the slides prepared from kidney tissue using a light microscope. RESULTS: Tissue damage was significantly higher in the cyclophosphamide group than in the cyclophosphamide+coenzyme q10 group (p<0.05). The malondialdehyde levels were significantly higher and the activities of superoxide dismutase and catalase were lower in the cyclophosphamide group than in the cyclophosphamide+coenzyme q10 group (p<0.05). CONCLUSION: Coenzyme q10 may be a good option to prevent cyclophosphamide-induced kidney damage.


Catalase , Cyclophosphamide , Malondialdehyde , Rats, Wistar , Superoxide Dismutase , Ubiquinone , Animals , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Cyclophosphamide/toxicity , Cyclophosphamide/adverse effects , Female , Catalase/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/drug effects , Kidney/drug effects , Kidney/pathology , Rats , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Antioxidants/pharmacology , Oxidative Stress/drug effects
2.
Front Cell Infect Microbiol ; 14: 1390104, 2024.
Article En | MEDLINE | ID: mdl-38741891

Introduction: Zinc (Zn) is an essential trace element in animals, but excessive intake can lead to renal toxicity damage. Thus, the exploration of effective natural antagonists to reduce the toxicity caused by Zn has become a major scientific problem. Methods: Here, we found that hesperidin could effectively alleviate the renal toxicity induced by Zn in pigs by using hematoxylin-eosin staining, transmission electron microscope, immunohistochemistry, fluorescence quantitative PCR, and microfloral DNA sequencing. Results: The results showed that hesperidin could effectively attenuate the pathological injury in kidney, and reduce autophagy and apoptosis induced by Zn, which evidenced by the downregulation of LC3, ATG5, Bak1, Bax, Caspase-3 and upregulation of p62 and Bcl2. Additionally, hesperidin could reverse colon injury and the decrease of ZO-1 protein expression. Interestingly, hesperidin restored the intestinal flora structure disturbed by Zn, and significantly reduced the abundance of Tenericutes (phylum level) and Christensenella (genus level). Discussion: Thus, altered intestinal flora and intestinal barrier function constitute the gut-kidney axis, which is involved in hesperidin alleviating Zn-induced nephrotoxicity. Our study provides theoretical basis and practical significance of hesperidin for the prevention and treatment of Zn-induced nephrotoxicity through gut-kidney axis.


Apoptosis , Gastrointestinal Microbiome , Hesperidin , Kidney , Zinc , Animals , Hesperidin/pharmacology , Swine , Zinc/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Apoptosis/drug effects , Gastrointestinal Microbiome/drug effects , Autophagy/drug effects , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control
3.
Sci Rep ; 14(1): 10511, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714773

Cisplatin (CDDP)-induced nephrotoxicity is a common dose-limiting toxicity, and diuretics are often administered to prevent nephrotoxicity. However, the efficacy and optimal administration of diuretics in preventing CDDP-induced nephrotoxicity remain to be established. This study aimed to evaluate the efficacy of combining furosemide and mannitol to prevent CDDP-induced nephrotoxicity. This was a post-hoc analysis of pooled data from a multicenter, retrospective, observational study, including 396 patients who received one or two diuretics for CDDP-based chemotherapy, compared using propensity score matching. Multivariate logistic regression analyses were used to identify risk factors for nephrotoxicity. There was no significant difference in the incidence of nephrotoxicity between the two groups (22.2% vs. 28.3%, P = 0.416). Hypertension, CDDP dose ≥ 75 mg/m2, and no magnesium supplementation were identified as risk factors for nephrotoxicity, whereas the use of diuretics was not found to be a risk factor. The combination of furosemide and mannitol showed no advantage over a single diuretic in preventing CDDP-induced nephrotoxicity. The renal function of patients receiving CDDP-based chemotherapy (≥ 75 mg/m2) and that of those with hypertension should be carefully monitored. Magnesium supplementation is important for these patients.


Cisplatin , Diuretics , Furosemide , Mannitol , Furosemide/adverse effects , Furosemide/administration & dosage , Cisplatin/adverse effects , Humans , Mannitol/therapeutic use , Mannitol/administration & dosage , Male , Female , Diuretics/administration & dosage , Diuretics/adverse effects , Diuretics/therapeutic use , Middle Aged , Retrospective Studies , Aged , Risk Factors , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Drug Therapy, Combination , Antineoplastic Agents/adverse effects , Adult
4.
Sci Rep ; 14(1): 10143, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698042

Sirtuin3 (SIRT3), a mitochondrial deacetylase, has been shown to be involved in various kidney diseases. In this study, we aimed to clarify the role of SIRT3 in cyclosporine-induced nephrotoxicity and the associated mitochondrial dysfunction. Madin-Darby canine kidney (MDCK) cells were transfected with Flag-tagged SIRT3 for SIRT3 overexpression or SIRT3 siRNA for the inhibition of SIRT3. Subsequently, the cells were treated with cyclosporine A (CsA) or vehicle. Wild-type and SIRT3 knockout (KO) mice were randomly assigned to receive cyclosporine A or olive oil. Furthermore, SIRT3 activator, honokiol, was treated alongside CsA to wild type mice. Our results revealed that CsA treatment inhibited mitochondrial SIRT3 expression in MDCK cells. Inhibition of SIRT3 through siRNA transfection exacerbated apoptosis, impaired the expression of the AMP-activated protein kinase-peroxisome proliferator-activated receptor gamma coactivator 1 alpha (AMPK-PGC1α) pathway, and worsened mitochondrial dysfunction induced by CsA treatment. Conversely, overexpression of SIRT3 through Flag-tagged SIRT3 transfection ameliorated apoptosis, increased the expression of mitochondrial superoxide dismutase 2, and restored the mitochondrial regulator pathway, AMPK-PGC1α. In SIRT3 KO mice, CsA treatment led to aggravated kidney dysfunction, increased kidney tubular injury, and accumulation of oxidative end products indicative of oxidative stress injury. Meanwhile, SIRT3 activation in vivo significantly mitigated these adverse effects, improving kidney function, reducing oxidative stress markers, and enhancing mitochondrial health following CsA treatment. Overall, our findings suggest that SIRT3 plays a protective role in alleviating mitochondrial dysfunction caused by CsA through the activation of the AMPK-PGC1α pathway, thereby preventing further kidney injury.


Apoptosis , Cyclosporine , Mice, Knockout , Mitochondria , Oxidative Stress , Sirtuin 3 , Animals , Sirtuin 3/metabolism , Sirtuin 3/genetics , Cyclosporine/adverse effects , Cyclosporine/toxicity , Cyclosporine/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Dogs , Apoptosis/drug effects , Oxidative Stress/drug effects , AMP-Activated Protein Kinases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Madin Darby Canine Kidney Cells , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Kidney Diseases/genetics , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Mice, Inbred C57BL , Male , Signal Transduction/drug effects
5.
Nefrologia (Engl Ed) ; 44(2): 180-193, 2024.
Article En | MEDLINE | ID: mdl-38697696

BACKGROUND: Contrast agents can directly or indirectly induce renal tubular ischemia and hypoxic damage. Given that cobalt chloride (CoCl2) can protect renal tubules, the protective effect and potential mechanism of action of CoCl2 on contrast-induced nephropathy (CIN) warrant investigation. METHODS: A CIN mouse model was established to determine the protective effect of CoCl2 on renal injury in vivo. Then, TMT-based proteomics was performed to determine the differentially expressed proteins (DEPs), following which, enrichment analyses of gene ontology and the KEGG pathway were performed. In vitro, a CIN model was constructed with renal tubular epithelial cells (HK-2) to determine the effect of CoCl2 on potential targets and the role of the key protein identified from the in vivo experiments. RESULTS: CoCl2 treatment decreased the levels of BUN and serum creatinine (sCr), while increasing the levels of urea and creatinine (Cr) in the urine of mice after CIN injury. Damage to the renal tubules in the CoCl2 treatment group was significantly less than in the CIN model group. We identified 79 DEPs after treating the in vivo model with CoCl2, and frequently observed ferroptosis-related GO and KEGG pathway terms. Of these, Hp (haptoglobin) was selected and found to have a strong renoprotective effect, even though its expression level in kidney tissue decreased after CoCl2 treatment. In HK-2 cells, overexpression of Hp reduced the ferroptosis caused by erastin, while knocking down Hp negated the attenuation effect of CoCl2 on HK-2 cell ferroptosis. CONCLUSION: CoCl2 attenuated kidney damage in the CIN model, and this effect was associated with the decrease in ferroptosis mediated by Hp.


Cobalt , Contrast Media , Ferroptosis , Ferroptosis/drug effects , Animals , Mice , Contrast Media/adverse effects , Male , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Mice, Inbred C57BL , Disease Models, Animal , Humans , Kidney Tubules/drug effects , Kidney Tubules/pathology
7.
Eur Rev Med Pharmacol Sci ; 28(6): 2538-2549, 2024 Mar.
Article En | MEDLINE | ID: mdl-38567613

OBJECTIVE: In the present study, the protective effects of adenosine triphosphate (ATP), Benidipine, and Lacidipine on potential kidney damage induced by 5-fluorouracil (5-FU) were investigated in rats. MATERIALS AND METHODS: Totally 48 rats were divided into 8 groups: healthy (HG), 5-FU (FUG), ATP+5-FU (AFU), Benidipine+5-FU (BFU), Lacidipine+5-FU (LFU), ATP+Benidipine+5-FU (ABFU), ATP+Lacidipine+5-FU (ALFU) and Benidipine+Lacidipine+5-FU (BLFU). In a 10-day period, ATP (4 mg/kg) was administered intraperitoneally, and Benidipine (4 mg/kg) and Lacidipine (4 mg/kg) were administered orally once a day. On days 1, 3, and 5, 5-FU (100 mg/kg) was administered intraperitoneally one hour after the drug was administered. Afterward, the rats were euthanized, and kidney tissues were removed. An analysis of malondialdehyde, total glutathione, superoxide dismutase, and catalase was performed on tissues, as well as a histopathological examination. A creatinine and blood urea nitrogen analysis were performed on blood samples. RESULTS: It was revealed that 5-FU decreased the amount of total glutathione, superoxide dismutase, and catalase activities in rat kidney tissues and increased malondialdehyde. Further, increased serum creatinine and blood urea nitrogen levels, as well as histopathological examination of kidney tissues, were found in the 5-FU group. ATP+Benidipine and ATP treatments were the most effective in preventing both biochemical and histopathological changes induced by 5-FU. A treatment with Benidipine improved biochemical and histopathologic data, but not to the same extent as a treatment with ATP+Benidipine and ATP. As a result of Lacidipine+ATP combination, 5-FU-induced biochemical changes in kidney tissue were partially inhibited, but the degree of histopathologic damage remained unchanged. Neither Benidipine+Lacidipine nor Lacidipine showed a protective effect on both biochemical changes and histopathologic damage. CONCLUSIONS: It may be possible to prevent nephrotoxicity by adding ATP + Benidipine or ATP to 5-FU treatment.


Dihydropyridines , Fluorouracil , Kidney Diseases , Rats , Animals , Fluorouracil/adverse effects , Kidney/pathology , Catalase , Adenosine Triphosphate , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Glutathione , Superoxide Dismutase , Malondialdehyde
8.
Ren Fail ; 46(1): 2327498, 2024 Dec.
Article En | MEDLINE | ID: mdl-38666363

Iguratimod is a novel synthetic, small-molecule immunosuppressive agent used to treat rheumatoid arthritis. Through ongoing exploration of its role and mechanisms of action, iguratimod has been observed to have antifibrotic effects in the lung and skin; however, its effect on renal fibrosis remains unknown. This study aimed to investigate whether iguratimod could affect renal fibrosis progression. Three different concentrations of iguratimod (30 mg/kg/day, 10 mg/kg/day, and 3 mg/kg/day) were used to intervene in unilateral ureteral obstruction (UUO) model mice. Iguratimod at 10 mg/kg/day was observed to be effective in slowing UUO-mediated renal fibrosis. In addition, stimulating bone marrow-derived macrophages with IL-4 and/or iguratimod, or with TGF-ß and iguratimod or SRC inhibitors in vitro, suggested that iguratimod mitigates the progression of renal fibrosis in UUO mice, at least in part, by inhibiting the IL-4/STAT6 signaling pathway to attenuate renal M2 macrophage infiltration, as well as by impeding SRC activation to reduce macrophage-myofibroblast transition. These findings reveal the potential of iguratimod as a treatment for renal disease.


Disease Models, Animal , Fibrosis , Interleukin-4 , Macrophages , STAT6 Transcription Factor , Sulfonamides , Ureteral Obstruction , Animals , Ureteral Obstruction/complications , Mice , Macrophages/drug effects , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Interleukin-4/metabolism , STAT6 Transcription Factor/metabolism , Male , Myofibroblasts/drug effects , Chromones/pharmacology , Chromones/therapeutic use , Kidney/pathology , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Kidney Diseases/etiology , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Kidney Diseases/drug therapy , Mice, Inbred C57BL , Immunosuppressive Agents/pharmacology
9.
Toxicology ; 504: 153786, 2024 May.
Article En | MEDLINE | ID: mdl-38522819

This study evaluated the effect of pharmacological inhibition of galectin 3 (Gal-3) with modified citrus pectin (MCP) on the heart and kidney in a model of cisplatin-induced acute toxicity. Male Wistar rats were divided into four groups (n = 6/group): SHAM, which received sterile saline intraperitoneally (i.p.) for three days; CIS, which received cisplatin i.p. (10 mg/kg/day) for three days; MCP, which received MCP orally (100 mg/kg/day) for seven days, followed by sterile saline i.p. for three days; MCP+CIS, which received MCP orally for seven days followed by cisplatin i.p. for three days. The blood, heart, and kidneys were collected six hours after the last treatment. MCP treatment did not change Gal-3 protein levels in the blood and heart, but it did reduce them in the kidneys of the MCP groups compared to the SHAM group. While no morphological changes were evident in the cardiac tissue, increased malondialdehyde (MDA) levels and deregulation of the mitochondrial oxidative phosphorylation system were observed in the heart homogenates of the MCP+CIS group. Cisplatin administration caused acute tubular degeneration in the kidneys; the MCP+CIS group also showed increased MDA levels. In conclusion, MCP therapy in the acute model of cisplatin-induced toxicity increases oxidative stress in cardiac and renal tissues. Further investigations are needed to determine the beneficial and harmful roles of Gal-3 in the cardiorenal system since it can act differently in acute and chronic diseases/conditions.


Antineoplastic Agents , Cisplatin , Galectin 3 , Kidney , Pectins , Rats, Wistar , Animals , Cisplatin/toxicity , Pectins/pharmacology , Male , Galectin 3/metabolism , Galectin 3/antagonists & inhibitors , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Antineoplastic Agents/toxicity , Rats , Cardiotoxicity , Myocardium/metabolism , Myocardium/pathology , Malondialdehyde/metabolism , Heart/drug effects , Oxidative Stress/drug effects , Galectins/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Kidney Diseases/prevention & control
10.
J Ethnopharmacol ; 327: 117986, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38437887

ETHNOPHARMACOLOGICAL RELEVANCE: Renal interstitial fibrosis (RIF) is a main pathological process in chronic kidney disease (CKD). Demethylzeylasteral (DML), a major component of Tripterygium wilfordii Hook. f., has anti-renal fibrosis effects. However, its mechanism of action remains incompletely understood. AIM OF THE STUDY: The present study was designed to comprehensively examine the effects of DML on RIF and the underlying mechanisms. MATERIALS AND METHODS: Pathological experiments were performed to determine the therapeutic effect of DML on a mouse model of UUO-induced RIF. To determine the novel mechanisms underlying the therapeutic effects of DML against RIF, a comprehensive transcriptomics analysis was performed on renal tissues, which was further verified by a series of experiments. RESULTS: Pathological and immunohistochemical staining showed that DML inhibited UUO-induced renal damage and reduced the expression of fibrosis-related proteins in mice. Transcriptomic analysis revealed that the partial subunits of mitochondrial complex (MC) I and II may be targets by which DML protects against RIF. Furthermore, DML treatment reduced mitochondrial reactive oxygen species (ROS) levels, consequently promoting ATP production and mitigating oxidative stress-induced injury in mice and cells. Notably, this protective effect was attributed to the inhibition of MC I activity, suggesting a crucial role for this specific complex in mediating the therapeutic effects of DML against RIF. CONCLUSIONS: This study provides compelling evidence that DML may be used to treat RIF by effectively suppressing mitochondrial oxidative stress injury mediated by MC I. These findings offer valuable insights into the pharmacological mechanisms of DML and its potential clinical application for patients with CKD.


Kidney Diseases , Renal Insufficiency, Chronic , Triterpenes , Ureteral Obstruction , Humans , Mice , Animals , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Kidney , Renal Insufficiency, Chronic/metabolism , Oxidative Stress , Fibrosis , Ureteral Obstruction/metabolism
11.
J Pharmacol Exp Ther ; 389(2): 208-218, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38453525

Renal fibrosis is distinguished by the abnormal deposition of extracellular matrix and progressive loss of nephron function, with a lack of effective treatment options in clinical practice. In this study, we discovered that the Beclin-1-derived peptide MP1 significantly inhibits the abnormal expression of fibrosis and epithelial-mesenchymal transition-related markers, including α-smooth muscle actin, fibronectin, collagen I, matrix metallopeptidase 2, Snail1, and vimentin both in vitro and in vivo. H&E staining was employed to evaluate renal function, while serum creatinine (Scr) and blood urea nitrogen (BUN) were used as main indices to assess pathologic changes in the obstructed kidney. The results demonstrated that daily treatment with MP1 during the 14-day experiment significantly alleviated renal dysfunction and changes in Scr and BUN in mice with unilateral ureteral obstruction. Mechanistic research revealed that MP1 was found to have a significant inhibitory effect on the expression of crucial components involved in both the Wnt/ß-catenin and transforming growth factor (TGF)-ß/Smad pathways, including ß-catenin, C-Myc, cyclin D1, TGF-ß1, and p-Smad/Smad. However, MP1 exhibited no significant impact on either the LC3II/LC3I ratio or P62 levels. These findings indicate that MP1 improves renal physiologic function and mitigates the fibrosis progression by inhibiting the Wnt/ß-catenin pathway. Our study suggests that MP1 represents a promising and novel candidate drug precursor for the treatment of renal fibrosis. SIGNIFICANCE STATEMENT: This study indicated that the Beclin-1-derived peptide MP1 effectively mitigated renal fibrosis induced by unilateral ureteral obstruction through inhibiting the Wnt/ß-catenin pathway and transforming growth factor-ß/Smad pathway, thereby improving renal physiological function. Importantly, unlike other Beclin-1-derived peptides, MP1 exhibited no significant impact on autophagy in normal cells. MP1 represents a promising and novel candidate drug precursor for the treatment of renal fibrosis focusing on Beclin-1 derivatives and Wnt/ß-catenin pathway.


Kidney Diseases , Prodrugs , Ureteral Obstruction , Animals , Mice , Beclin-1/metabolism , Beclin-1/pharmacology , beta Catenin/metabolism , beta Catenin/pharmacology , Fibrosis , Kidney , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Prodrugs/pharmacology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factors/metabolism , Transforming Growth Factors/pharmacology , Ureteral Obstruction/complications , Ureteral Obstruction/drug therapy , Ureteral Obstruction/metabolism
12.
Metab Syndr Relat Disord ; 22(3): 170-178, 2024 Apr.
Article En | MEDLINE | ID: mdl-38386800

Type 2 diabetes (T2D) is the leading cause of chronic kidney disease (CKD). In addition, the cardiovascular prevalence in diabetic patients is around 32.2%, with a two-fold increased mortality risk compared to those without diabetes. Recent investigations have shed light on the promising cardioprotective and nephroprotective benefits of sodium-glucose cotransporter-2 inhibitors (SGLT2i), glucagon-like peptide-1 receptor agonists (GLP-1RA), and nonsteroidal mineralocorticoid receptor antagonists (nsMRAs) for individuals with T2D. The evidence robustly indicates that SGLT2i and GLP-1RA significantly reduce the risk of CKD and cardiovascular disease (CVD), all while effectively managing blood glucose levels. Furthermore, combining SGLT2i with nsMRAs amplifies the benefits, potentially offering a more profound reduction in cardiovascular and renal outcomes. The data analysis strongly supports the integration of these pharmacological agents in the management strategies for CKD and CVD prevention among T2D patients, highlighting the importance of awareness among nephrologists, especially in regions with limited healthcare resources.


Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Renal Insufficiency, Chronic , Sodium-Glucose Transporter 2 Inhibitors , Humans , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor Agonists/therapeutic use , Hypoglycemic Agents/therapeutic use , Kidney/drug effects , Mineralocorticoid Receptor Antagonists/therapeutic use , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Kidney Diseases/etiology , Kidney Diseases/prevention & control , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control
13.
Eur Rev Med Pharmacol Sci ; 28(3): 1103-1110, 2024 Feb.
Article En | MEDLINE | ID: mdl-38375716

OBJECTIVE: The aim of this study was to explore the protective effect of candesartan against cisplatin-induced kidney damage, with a specific focus on the growth differentiation factor 15 (GDF-15) pathway. MATERIALS AND METHODS: 24 adult female Wistar rats, with a weight range of 200-210 grams, were enrolled in the study. Eight rats were included as a normal control group and did not receive any medication. 16 rats were administered cisplatin at a dosage of 2.5 mg/kg/day twice a week for 4 weeks (total dose 20 mg/kg). Then, they were randomly divided into two groups and treated with 1 ml/kg/day tap water or 8 mg/kg/day candesartan via oral gavage daily for 4 weeks. At the end of the treatment period, animals were sacrificed, and their kidneys were assessed histologically. In addition, plasma malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), creatinine, and GDF-15 levels were assessed. RESULTS: Treatment with candesartan resulted in a significant rise in serum GDF-15 levels and a significant reduction in levels of serum MDA, TNF-α, IL-6, and creatinine compared to the cisplatin and saline group. Candesartan treatment effectively protected the kidney injury, and histopathological examinations of the kidneys confirmed these results. CONCLUSIONS: This study demonstrates that candesartan alleviates cisplatin-induced renal toxicity by further increasing GDF-15, downregulating inflammatory markers, and reducing oxidative stress.


Benzimidazoles , Biphenyl Compounds , Cisplatin , Kidney Diseases , Tetrazoles , Rats , Female , Animals , Cisplatin/toxicity , Growth Differentiation Factor 15 , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Creatinine , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Kidney/pathology , Oxidative Stress
14.
Nutrients ; 16(2)2024 Jan 05.
Article En | MEDLINE | ID: mdl-38257077

Hyperuricemia (HUA) is a prevalent chronic disease, characterized by excessive blood uric acid levels, that poses a significant health risk. In this study, the preventive effects and potential mechanisms of ethanol extracts from Chinese sumac (Rhus chinensis Mill.) fruits on HUA and uric acid nephropathy were comprehensively investigated. The results demonstrated a significant reduction in uric acid levels in hyperuricemia mice after treatment with Chinese sumac fruit extract, especially in the high-dose group, where the blood uric acid level decreased by 39.56%. Visual diagrams of the kidneys and hematoxylin and eosin (H&E)-stained sections showed the extract's effectiveness in protecting against kidney damage caused by excessive uric acid. Further investigation into its mechanism revealed that the extract prevents and treats hyperuricemia by decreasing uric acid production, enhancing uric acid excretion, and mitigating the oxidative stress and inflammatory reactions induced by excessive uric acid in the kidneys. Specifically, the extract markedly decreased xanthine oxidase (XOD) levels and expression in the liver, elevated the expression of uric acid transporters ABCG2, and lowered the expression of uric acid reabsorption proteins URAT1 and SLC2A9. Simultaneously, it significantly elevated the levels of endogenous antioxidant enzymes (SOD and GSH) while reducing the level of malondialdehyde (MDA). Furthermore, the expression of uric-acid-related proteins NLRP3, ACS, and Caspase-3 and the levels of IL-1ß and IL-6 were significantly reduced. The experimental results confirm that Chinese sumac fruit extract can improve HUA and uric acid nephropathy in mice fed a high-purine yeast diet. This finding establishes a theoretical foundation for developing Chinese sumac fruit as a functional food or medicine for preventing and treating HUA.


Ailanthus , Hyperuricemia , Kidney Diseases , Rhus , Animals , Mice , Saccharomyces cerevisiae , Fruit , Uric Acid , Hyperuricemia/chemically induced , Hyperuricemia/prevention & control , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Plant Extracts/pharmacology , Diet
15.
Pharmacol Rep ; 76(1): 98-111, 2024 Feb.
Article En | MEDLINE | ID: mdl-38214881

BACKGROUND: Obstructive nephropathy is a condition often caused by urinary tract obstruction either anatomical (e.g., tumors), mechanical (e.g., urolithiasis), or compression (e.g., pregnancy) and can progress to chronic kidney disease (CKD). Studies have shown sexual dimorphism in CKD, where males were found to have a more rapid decline in kidney function following kidney injury compared to age-matched females. Protocatechuic acid (PCA), an anti-oxidant and anti-inflammatory polyphenolic compound, has demonstrated promising effects in mitigating drug-induced kidney injuries. The current study aims to explore sexual dimorphism in kidney injury after unilateral ureteral obstruction (UUO) and assess whether PCA treatment can mitigate kidney injury in both sexes. METHODS: UUO was induced in 10-12 weeks old male and female C57BL/6J mice. Mice were categorized into four groups (n = 6-8/group); Sham, Sham plus PCA (100 mg/kg, I.P daily), UUO, and UUO plus PCA. RESULTS: After 2 weeks of induction of UUO, markers of kidney oxidative stress (TBARs), inflammation (IL-1α and IL-6), tubular injury (neutrophil gelatinase-associated lipocalin, NGAL and urinary kidney injury molecule-1, KIM-1), fibrosis (Masson's trichrome staining, collagen IV expression, MMP-2 and MMP-9) and apoptosis (TUNEL+ cells, active caspase-1 and caspase-3) were significantly elevated in both males and females relative to their sham counterparts. Males exhibited significantly greater kidney oxidative stress, inflammation, fibrosis, and apoptosis after induction of UUO when compared to females. PCA treatment significantly attenuated UUO-induced kidney injury, inflammation, fibrosis, and apoptosis in both sexes. CONCLUSION: Our findings suggest a differential gender response to UUO-induced kidney injury with males being more sensitive to UUO-induced kidney inflammation, fibrosis, and apoptosis than age-matched females. Importantly, PCA treatment reduced UUO-induced kidney injury in a sex-independent manner which might be attributed to its anti-oxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic properties.


Hydroxybenzoates , Kidney Diseases , Renal Insufficiency, Chronic , Ureteral Obstruction , Female , Mice , Male , Animals , Ureteral Obstruction/complications , Ureteral Obstruction/drug therapy , Sex Characteristics , Antioxidants/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Kidney , Kidney Diseases/drug therapy , Kidney Diseases/etiology , Kidney Diseases/prevention & control , Renal Insufficiency, Chronic/metabolism , Apoptosis , Inflammation/metabolism , Fibrosis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
16.
J Ethnopharmacol ; 325: 117824, 2024 May 10.
Article En | MEDLINE | ID: mdl-38278375

ETHNOPHARMACOLOGICAL RELEVANCE: Cornus officinalis var. koreana Kitam (Cornus officinalis) is a commonly used Chinese herbal medicine and has a good clinical efficacy in kidney and liver diseases. Recent years, a number of studies reported the significant effects of Cornus officinalis on renal fibrosis. However, it is still unclear about the underlying specific mechanism, the bioactive ingredients, and the target gene regulatory network. AIM OF THE STUDY: We investigated the impact of Cornus officinalis extract on cadmium-induced renal fibrosis, screened the bioactive ingredients of Cornus officinalis using a pharmacological sub-network analysis, and explored the regulatory effects of Cornus officinalis extracts on target gene matrix metallopeptidase 9 (MMP9). METHODS: Male C57BL/6N mice were treated with single or combinatorial agents such as saline, cadmium chloride, Cornus officinalis, Isoginkgetin and FSL-1. Isoginkgetin is a compound with anti-MMP9 activity. FSL-1 can induce MMP9 expression. Masson staining and Western blot and immunohistochemistry analyses were used for assessing renal fibrosis. In addition, wound healing model was established using BUMPT (Boston university mouse proximal tubular) cells to investigate how Cornus officinalis affected cadmium-induced cell migration. The main Cornus officinalis bioactive compounds were identified by UHPLC-MS (Ultra-high-performance liquid chromatography - mass spectrometry). The MMP9 target for Cornus officinalis active ingredients were confirmed through a pharmacological sub-network analysis. RESULTS: Aqueous extracts of Cornus officinalis protected from renal dysfunction and kidney fibrosis induced by cadmium chloride in mice. In vitro experiments validated that Cornus officinalis extracts inhibited cell migration ability especially in cadmium chloride condition. The sub-network analysis and chemical components profiling technique revealed the active compounds of Cornus officinalis. Cellular thermal shift assay verified the binding abilities of three active components Daidzein, N-Acetyl-L-tyrosine or Swertisin with matrix metalloproteinase-9. Gelatin zymography assay revealed that the activity of MMP9 was inhibited by the three active components. We further confirmed that MMP9 was involved in the process of Cornus officinalis extracts reducing renal fibrosis. Cornus officinalis attenuated the cadmium-induced renal fibrosis was correlated with decreased expression of MMP9, collagen I, α-SMA (alpha-smooth muscle actin) and vimentin. CONCLUSIONS: This study demonstrated that Cornus officinalis extracts could alleviate the cadmium chloride-induced renal fibrosis by targeting MMP9, and might provide new insights into the mechanism of treating renal fibrosis by Cornus officinalis.


Cornus , Kidney Diseases , Humans , Male , Mice , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Cornus/chemistry , Cadmium/toxicity , Matrix Metalloproteinase 9 , Cadmium Chloride , Mice, Inbred C57BL , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Fibrosis
17.
Diabetes Obes Metab ; 26(3): 878-890, 2024 Mar.
Article En | MEDLINE | ID: mdl-38031821

AIM: To assess the potential heterogeneity in cardiovascular (CV), renal and safety outcomes of canagliflozin between Whites and Asians, as well as these outcomes in each subgroup. MATERIALS AND METHODS: The CANVAS Program enrolled 10 142 patients with type 2 diabetes, comprising 78.34% Whites and 12.66% Asians. CV, renal and safety outcomes were comprehensively analysed using Cox regression models, while intermediate markers were assessed using time-varying mixed-effects models. Racial heterogeneity was evaluated by adding a treatment-race interacion term. RESULTS: Canagliflozin showed no significant racial disparities in the majority of the CV, renal and safety outcomes. The heterogeneity (p = .04) was observed on all-cause mortality, with reduced risk in Whites (hazard ratio 0.84; 95% confidence interval 0.71-0.99) and a statistically non-significant increased risk in Asians (hazard ratio 1.64; 95% confidence interval 0.94-2.90). There was a significant racial difference in acute kidney injury (p = .04) and a marginally significant racial heterogeneity for the composite of hospitalization for heart failure and CV death (p = .06) and serious renal-related adverse events (p = .07). CONCLUSION: Canagliflozin reduced CV and renal risks similarly in Whites and Asians; however, there was a significant racial discrepancy in all-cause mortality. This distinction may be attributed to the fact that Asian patients exhibited diminished CV protection effects and more renal adverse events with canagliflozin, potentially resulting from the smaller reductions in weight and uric acid. These findings highlight the importance of investigating the impact of race on treatment response to sodium-glucose cotransporter-2 inhibitors and provide more precise treatment strategies.


Canagliflozin , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Kidney Diseases , Sodium-Glucose Transporter 2 Inhibitors , Humans , Canagliflozin/adverse effects , Canagliflozin/therapeutic use , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/ethnology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/ethnology , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Asian/statistics & numerical data , White/statistics & numerical data , Kidney Diseases/epidemiology , Kidney Diseases/ethnology , Kidney Diseases/etiology , Kidney Diseases/prevention & control
18.
Ultrastruct Pathol ; 48(1): 29-41, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-37970647

Investigation the protective effect of transient receptor potential channel modulator 2-Aminoethoxydiphenyl Borate (2-APB) on aminoglycoside nephrotoxicity caused by reactive oxygen species, calcium-induced apoptosis and inflammation was aimed. Forty Wistar rats were divided (n=8) as follows: Control group; DMSO group; 2-APB group; Gentamicin group (injected 100 mg/kg gentamicin intramuscularly for 10 days); Gentamicin+ 2-APB group (injected 2 mg/kg 2-APB intraperitoneally, then after 30 minutes 100 mg/kg gentamicin was injected intramuscularly for 10 days). Blood samples were collected for biochemical analyses, kidney tissue samples were collected for light, electron microscopic and immunohistochemical investigations. In gentamicin group glomerular degeneration, tubular dilatation, vacuolization, desquamation of tubular cells and hyaline cast formation in luminal space and leukocyte infiltration were seen. Disorganization of microvilli of tubular cells, apical cytoplasmic blebbing, lipid accumulation, myelin figure like structure formation, increased lysosomes, mitochondrial swelling and disorganization of cristae structures, apoptotic changes and widening of intercellular space were found. TNF-α, IL-6 and caspase 3 expressions were increased. BUN and creatinine concentrations were increased. Increase in MDA levels and decrease in SOD activities were determined. Even though degeneration still continues in gentamicin+2-APB treatment group, severity and the area it occupied were decreased and the glomerular and tubule structures were generally preserved. TNF-α, IL-6, caspase 3 immunoreactivities and BUN, creatinine, MDA concentrations were reduced and SOD activities were increased markedly compared to gentamicin group. In conclusion, it has been considered that 2-APB can prevent gentamicin mediated nephrotoxicity with its anti-oxidant, anti-apoptotic and anti-inflammatory effects.


Kidney Diseases , Kidney , Rats , Animals , Caspase 3/metabolism , Caspase 3/pharmacology , Aminoglycosides/adverse effects , Aminoglycosides/metabolism , Rats, Wistar , Creatinine/metabolism , Creatinine/pharmacology , Tumor Necrosis Factor-alpha , Interleukin-6 , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Anti-Bacterial Agents/adverse effects , Antioxidants/pharmacology , Gentamicins/toxicity , Gentamicins/metabolism , Superoxide Dismutase/metabolism , Oxidative Stress
19.
Am J Pathol ; 194(1): 101-120, 2024 Jan.
Article En | MEDLINE | ID: mdl-37827215

The Wnt/ß-catenin pathway represents a promising therapeutic target for mitigating kidney fibrosis. Corin possesses the homologous ligand binding site [Frizzled-cysteine-rich domain (Fz-CRD)] similar to Frizzled proteins, which act as receptors for Wnt. The Fz-CRD has been found in eight different proteins, all of which, except for corin, are known to bind Wnt and regulate its signal transmission. We hypothesized that corin may inhibit the Wnt/ß-catenin signaling pathway and thereby reduce fibrogenesis. Reduced expression of corin along with the increased activity of Wnt/ß-catenin signaling was found in unilateral ureteral obstruction (UUO) and ureteral ischemia/reperfusion injury (UIRI) models. In vitro, corin bound to the Wnt1 through its Fz-CRDs and inhibit the Wnt1 function responsible for activating ß-catenin. Transforming growth factor-ß1 inhibited corin expression, accompanied by activation of ß-catenin; conversely, overexpression of corin attenuated the fibrotic effects of transforming growth factor-ß1. In vivo, adenovirus-mediated overexpression of corin attenuated the progression of fibrosis, which was potentially associated with the inhibition of Wnt/ß-catenin signaling and the down-regulation of its target genes after UUO and UIRI. These results suggest that corin acts as an antagonist that protects the kidney from pathogenic Wnt/ß-catenin signaling and from fibrosis following UUO and UIRI.


Kidney Diseases , Wnt Signaling Pathway , Mice , Animals , Wnt Signaling Pathway/physiology , beta Catenin/metabolism , Transforming Growth Factor beta1/metabolism , Kidney Diseases/genetics , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Kidney/pathology , Fibrosis , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
20.
Environ Sci Pollut Res Int ; 30(52): 112745-112757, 2023 Nov.
Article En | MEDLINE | ID: mdl-37837591

Lead is one of the cursed substances that threaten all human life. Lead poisoning can occur through food or water contaminations and it is hard to be detected. This incognito metal accumulates over time and resides in the liver, kidneys, and brain tissues leading to serious medical conditions, affecting organ functions, causing failure, kidney tubule degeneration, and destroying neuronal development. However, known metal chelators have bad negative effects. Asparagus officinalis (AO) is a promising herb; its root extract exhibited antioxidant, antiapoptotic, protective, and immunomodulatory activities. Inspired by those reasons, this study investigated to which extent Asparagus extract affected male mice's renal toxicity caused by lead acetate (LA) and antioxidant defense system. This work screened for its nephroprotective activity in four mouse groups: negative and positive control, LA group with renal injury, and diseased but pretreated mice with AO extract (AOE). Kidney index and kidney function biomarkers were evaluated. Antioxidant activities, lipid peroxidation, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), nitric oxide (NO), and reduced glutathione (GSH) were also tested. Furthermore, inflammatory cytokine (tumor necrosis factor-α (TNF-α), interleukin-1 ß (IL-1ß), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)), inducible nitric oxide synthase (iNOS), renal pro-apoptotic protein (Bax), antiapoptotic protein (Bcl-2), and caspase-3 levels were evaluated. The results showed that LA administration induced oxidative stress, renal inflammation, apoptosis, and renal histopathological alteration. However, due to its antioxidant activities, AOE was found to restrain oxidative stress, therefore preventing inflammation and apoptosis. Collectively, AOE perfectly clogged lead poisoning sneaking, stopped the bad deterioration, and succeeded to protect kidney tissues from toxicity, inflammation, and apoptosis.


Asparagus Plant , Kidney Diseases , Renal Insufficiency , Male , Mice , Humans , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Asparagus Plant/metabolism , Lead/metabolism , Kidney , Oxidative Stress , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Inflammation/metabolism , Apoptosis , Water/metabolism
...